Statistical Concepts

Levels of Measurement
Types of Statistics
Confidence Level
Types of Variables
Types of Designs

Levels of Measurement

Nominal

Ordinal

Interval

Ratio

Types of Data

Nominal or Ordinal measures

Interval or Ratio measures

Types of Statistics

Descriptive
Summary
Correlational
Inferential

Importance of the Normal Curve

Summary Statistics

- •Mean
- •Median
- •Mode

Dispersion Statistics

- -Range
- -Variance
- -Standard Deviation
- *-z* Score

Correlational Statistics

Correlations tell us nothing about causation
 Correlations assume linear relationships
 Pearson's *r* most commonly used
 Most correlational statistics range from approx. -1 to +1 with 0 = random chance

Inferential Statistics

Parametric

Non-Parametric

Deals with SCORES & assumes a normal distribution in the population

Deals with FREQUENCIES & makes no assumptions about the population

 \blacksquare Chi Square (X^2)

ANOVA

t-test

Confidence Level

■ Set at .05 (or 5%) for social sciences

Represents the probability of our findings being due to random chance and NOT a real relationship in the population

Probability levels (p) between .05 and .01 are called "significant"

Probability levels of .01 or below are called "highly significant

Types of Variables

Independent

- What we manipulate or select for
- Examples:
 - Age
 - Gender
 - Experimental vs. Control group

Dependent (Criterion)

- What we measure or observe
 - Examples: Attitude scores Viewing habits Program preferences
 - Content mastered

Types of Designs

Experimental

- Usually 2 groups randomly assigned
- Experimental group is shown a video or exposed to some media experience, etc.
- Control group experiences exactly the same environment minus the experimental component

Empirical

- Subjects self-select their behavior relative to our dependent variable
- We observe how this behavior may vary among sub-groups which we devise based on our independent variable, i.e. gender or age brackets

All About Tails

 Most inferential statistics will yield a 1-tailed and a 2-tailed probability level

- The 1-tailed will be ¹/₂ the 2-tailed level (which is better because this is the odds of being WRONG)
- If you accurately predict the outcome of your study, you report the 1-tailed probability

If you can't predict the outcome or it comes out opposite your prediction, you report the 2-tailed probability

■ You NEVER report both levels!!!!

The Cookbook

Level of Measurement	1 Variable	2 Variables
Interval or Ratio (scores)	Descriptive Central Tendency: Mean Median Mode Dispersion: Variance Standard Deviation z scores	Correlational Pearson's r: Both Variables- interval or ratio level, no assumption of causation Inferential (parametric) t-test: Ind. Variable- nominal or ordinal (2 values/groups) Dep. Variable- interval or ratio level (scores) ANOVA: Ind. Variable- nominal or ordinal (>2 values/groups) Dep. Variable- interval or ratio level (scores)
Nominal or Ordinal (frequencies)	<u>Descriptive</u> Frequency Distribution Histogram Curve	Inferential (non-parametric) Chi Square (x ²): Ind. Variable- nominal or ordinal level (2 or more values/groups) Dep. Variable- nominal or ordinal level (2 or more values) Deals with frequencies, NOT means